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Disclaimer

e material selected here is based on personal experience with the subject so far
e 1o longer able to keep track of all developments; lots of interesting work on the limit € — 0
e need to skip many interesting aspects, also some technical details

e goal is not that all details here will be understood at first pass; important: now get the big
picture, can follow up on details on second pass through notes

1 Introduction
Definition 1.1 (Setting).
e X will be a compact metric space, C(X) denotes continuous (real-valued) functions

e M(X), My(X),P(X) will be (signed) Radon measures, non-negative measures, and prob-
ability measures, respectively

o We will use a lot the duality between continuous functions and measures on X.
e c € C(X x X) will be a continuous cost function

e P, P, denote the marginal projection operators:
| o= [ oty
X XxX

correspond to push-forward by map (z1, z2) — ;.

e For finite spaces X = {z1,...,x,}, we usually identify M(X) ~ C(X) ~ R" (and likewise
with product spaces). Then for u € M(X) we denote by p; the mass at z;, et cetera.

Definition 1.2 (KL divergence). Let
slog(s) —s+1 for s> 0,

v : R —[0,00], s <1 for s =0,
+00 for s < 0.

Note that ¢ is convex, proper and lower-semicontinuous. Then for p,v € M(X), the Kullback—
Leibler (KL) divergence of p w.r.t. v is given by

fxw(%>dy if u<<v,v>0,

+00 else.

KL(ulv) := {

Definition 1.3 (Entropic transport problem). For p,v € P(X), a continuous cost function
¢ € C(X x X), regularization strength ¢ > 0 and a reference measure p € M (X x X), the
entropic transport problem is given by

Ce(p,v) :==inf {/Xxx cdy+e KL(7|P)‘7 € T'(u, V)}
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Remark 1.4 (Motivation).

e Will show: entropic transport problem has unique solution; gives stability of solutions
w.r.t. fluctuations in marginals or cost function; even differentiability. Useful for down-
stream applications.

e Can be solved efficiently with simple numerical method: Sinkhorn algorithm

e Will allow for more reliable statistical estimation of optimal transport between sampled
empirical measures. (Beyond the scope of this course.)

Remark 1.5 (Choice of reference measure). There are many different potential choices for the
reference measure p € M (X x X). Common choices are:

(i) For a finite space X = {x1,...,2,} one often uses the Shannon entropy, i.e. one sets p to
be the counting measure, p; ; = 1.

(ii) In some applications, if X C R?, it may be natural to choose p = L2 (X x X). This will
only work well, if all measures of interest u and v are dominated by the Lebesgue measure.

(iii) The most agnostic choice is probably p = u ® v. Then, the optimal objective is always
finite (for bounded cost functions) and we will show that regular dual solutions exist.

Lemma 1.6. KL is jointly weak™ lower-semicontinuous and convex in both arguments. For fixed
ve Mi(X), p— KL(p|v) is strictly convex.

Proof. Joint Isc follows from [Ambrosio et al., 2000, Theorem 2.34] since the function ¢ is non-
negative, convex and lower-semicontinuous. Join convexity follows from the fact that the function
(r,s) — slog(s/r) — s+ r. Strict convexity in the first argument follows from strict convexity of
P. 0

Lemma 1.7. If the infimal objective is finite, the entropic optimal transport problem has a
unique solution.

Proof. Since I'(u, v) is bounded (and weak* closed), any minimizing sequence has weak™ cluster
points that also lie in I'(u,v). Clearly, the map v +— fXxX cdy is continuous. By the above
Lemma the KL term is lower-semicontinuous. Hence, any cluster point must be a minimizer.

Assume the objective is finite. Let 1,72 € I'(u,v) be two minimizers, and therefore have
KL(7i|p) < co. By linearity of the term v — [y, cdy and strict convexity of the KL-term, if
Y1 # Y2, then (71 4+ 7v2)/2 would be an even better candidate. Hence v; = 72 and the minimizer
must be unique. O

Remark 1.8. Choose ¢(z,y) = d(z,y)? for a metric d on X and € > 0. Then the map
We: P(X)? 3 (1,v) = Celp,v)"?

is no longer a metric on P(X). (Unless something really boring happens, like X being only a
single point and choosing p to be the probability measure on that single point.)

In general one finds that We(u, u) > 0 and that it violates the triangle inequality. The former
issue (along with something called ‘entropic bias’) can be fixed by the Sinkhorn divergence [Feydy
et al., 2018]. While they do not satisfy the triangle inequality, they are a useful (and statistically
robust) notion of similarity in many applications. The question of a metric induced by entropic
optimal transport is (to my knowledge) still open.

2 Convergence as € — (

Definition 2.1 (Setting). Let (e,)nen be a strictly positive, decreasing sequence with limit
lim;, 00 €, = 0. Let pu, v € P(X) and choose as reference measure p = pu ® v. Set

En(y) = /X . cdy +en KL(Y|p @ v) + tp(u) (7)),
X

B(y) = / ey + 1 ().
XxX



Let (vn)nen be a sequence of minimizers of E,, (existence shown above, with finite optimal
objective). We will now show that, up to selection of subsequences, (7;), converges to some 7y
that minimizes F, and that the optimal objectives converge.

Proposition 2.2 (Finite space). Let X = {x1,...,2,} be a finite space. Then the sequence
(Vn)nen is precompact and any cluster point v minimizes E. The optimal objectives converge.

Proof. For simplicity, w.l.o.g. assume that p and v are strictly positive (otherwise, simply remove
points x; where p; = 0 from the first marginal space, and similarly with the second marginal).
Then p is strictly positive, and by finiteness of X, p is bounded away from zero by some finite
constant. Therefore, by continuity of ¢ on its domain [0, o], the domain of

R™™ 3y e KL(ylp) = Y 9(3i/pig) - pi
i

is R™ and it is continuous on this domain. The set I'(u, v) C R" is compact and therefore
KL(+|p) is bounded on I'(u,v) (say, by some constant C' < oo). Therefore, E,(v,) — E(yn) €
[0,e, - C].

Since I'(u, v) is compact and non-empty, (7,)n will have cluster points (that also lie in I'(u, v)).
Let now v be any such cluster point, for simplicity denote by (7,)n & convergent subsequence.
Clearly, E is continuous on I'(y, ). Therefore we find:

lim By, (v,) = lim E(y,) = E(7)

Finally, if there were some 4 € I'(u, v) with E(¥) < E(v), then for sufficiently big n (and some
suitable 6 > 0) we would have

E.(%) = E(:Y) +én - KL(:Y’M ® V) < E(:Y) +ep-C< E(’Y) -40< E(’)’n) < En(’Yn)
which contradicts the optimality of v, for F,,. Therefore, v must minimize FE. O

For continuous X the situation is more involved, since KL(-|u®v) will in general not be bounded
(or even finite) on I'(u, v) and might be infinite for minimizers of E. We will show convergence
of minimizers by means of I'-convergence. Much more general versions of the following result
are possible (on non-compact spaces, with less regular cost functions, and with approximate
marginals). We focus on a few key properties of the problem here.

Lemma 2.3. Let (7,), be a sequence in M(X x X) that converges weak* to v € M(X x X).
Then
lim inf Eo(70) > E().
n

Proof. Since I'(u,v) is weak™® closed, if v ¢ T'(u,v), we will eventually have that ~, ¢ T'(u,v)
and thus E(y) = E,(v,) = oo for sufficiently large n. So assume v € I'(u, v) from now on.
Then, using weak™ continuity of the linear cost term and non-negativity of the entropy term, we
obtain

liminf E,,(v,) = lim inf/ cdyn +en - KL(ynlp @ v)
n XxX

n

> lim cdy, = E(7).
" JXxX

O

The lim-sup inequality is considerably more involved. For v € T'(u, v) with KL(v|p® v) = oo we
need to construct an approximating sequence (7, ), with finite entropy (diverging in a controlled
way) while preserving the marginals. We do this here via the block approximation trick |Carlier
et al., 2017].



Definition 2.4 (Block approximation). Let v € I'(u,v). For a length scale L > 0, denote by
{X©r:}it a (measurable) partition of X into nj, sets, each of which with diameter at most L.
Such a partition exists by compactness of X. Denote in the following

pri = w(Xri), vy =v(Xr,), YL =YX x Xrj),

and finally

plXp vl X ;.
e if UL VL > 0
)‘L,i,j - { KL,i'VL,j 5T 5J )

else.

Then the block approximation of v at scale L is given by
ng
’yL = Z ryLvl:.] : )\Lvivj'
i,j=1
Lemma 2.5. v, € I'(p, v).
Proof. First observe: «, > 0. Next, observe that
ny, nr,
Z’YL,Z',]‘ = Z’V(XL,z’ x X1j) =v(Xpix X) = w(Xri) = pr-
j=1 j=1

In particular, this implies v7,;; > 0 = pr; > 0. And of course likewise for the other marginal.
Now, for any measurable A C X one has

nr
YLAXX) =" Y05 ALij(Ax X)

i,j=1
VLi,j
= Z T‘M(XLJOA)‘V(XLJQX)
ij=1,...,nL: KL VL.
YL,i,;>0
VL.
= > Ep(XpinA)
ij=t g ML
YL,i,5>0
= Y wXpinA)=p(A).
i=1,...,nr:
pr,i>0
The same computation applies for the second marginal, which completes the proof. O

Lemma 2.6. Equip X x X with the metric D((z1,x2), (y1,92)) := d(z1,y1) + d(22,y2) (which
yields a compact metric space). Then W, (v,~vr) < 2L and in particular 7y, Ao~vas L — 0.

Proof. A potential transport plan from v to 7z involves moving mass only within products of
partition cells Xy, ; x X ;, which have diameter bounded by 2L in D. This yields the Wasserstein
bound, which implies the weak* convergence. O

Lemma 2.7. KL(y.|p ® v) < 2log(nr).



Proof.

KL(yz|pn® v) —/ 0 (digy) du® v
XxX

= Z Z 80< L )',UL,i-VL,j

s
i=1,mpj=lmp:  \HEi VL
pr,;>0 vp,;>0

’}/L7.7'
= X [t () s

LT s
i=1,...,nr:j=1,...,np: MLy VL,j
prLi>0 vy ;>0

— Z Z VL, - [log(pr,) +log(vr,;)]

i=1,...,np:j=1,...,np:
pr,i>0 vr,;>0

<— > pri-log(upd) — Y vy -log(vey)
i=1,...nr: Jj=1,...,np:
pnr,i>0 vp ;>0

< —2log(1/ng) = 2log(nr)

IN

where we used that R > p — > 7" p;log(p;) is convex and minimized among ‘probability
vectors’ by the ‘uniform’ one p; = 1/np. O]

Using now the block approximation and its basic properties that we established, we conclude:

Lemma 2.8 (Lim sup). For any v € I'(u, v) there is a sequence (), converging weak* to -,
such that

Proof. Let (Ly), be a positive sequence. Then

En(yn) < / Cd% + 2, IOg(nLn)'
XxX
Choosing now (L), decreasing, such that €, log(nr,) — 0, and with the weak™ convergence of
(vL, )n to v one obtains the result. O
Together, lim-inf and lim-sup inequality provide:

Proposition 2.9. Let (), be a sequence of minimizers for E,, (their existence was established
earlier). Then the sequence is weak™ precompact and any cluster point minimizes E.

Proof. Weak™ precompactness is obtained from compactness of I'(, ). Any cluster point 7 then
satisfies
liminf By (v,) = E(7).
n

(Restriction to subsequences is no issue here, since E,(;,) can be seen to be non-increasing, and
thus all subsequences have the same limit inferior.) If there were some other 7, with E(y) < E(vy),
then a recovery sequence (%), for 4, constructed via the block approximation as above, would
satisfy

E(’?) = hrrln En(ﬁ/n)

and thus for sufficiently big n one would obtain the contradiction

Enﬁn) < En(Vn)~ O

3 Duality

Theorem 3.1 (Fenchel-Rockafellar). Let (X, X*), (Y, Y™*) be two couples of topologically paired
spaces. Let A : X — Y be a bounded linear operator. Let G and F' be proper convex functions,



defined on X and Y respectively, with values in (—oo, o0]. If there exists € X such that G is
finite at x and F' is continuous at Ax, then

inf F(Az) + G(z) = sup —F*(—y*) — G*(A™y").
rxeX yreEY*

The supremum is attained.

Proposition 3.2 (Duality for entropic OT). A dual problem for the entropic OT problem is
given by

C’E(u,u):sup{/qudujL/Xq/)du—s/X X[exp(%)—l] dp

Here ¢ @ v denotes the function (x,y) — ¢(x) + ¥ (y).

ONUNS C(X)}.

Proof. Setting

F: M(X)?* = (—o0, 0], F= @y
G - M(X % X) - (—o0,00], e [ edyreKLG)

XxX
A M(X x X) = M(X)?, v = (P1y, P2y)

we can write the entropic transport problem as

inf  F(Av) + G(~).
e (Ay) + G(v)

We find that we cannot directly apply the FR duality theorem, since F' is nowhere continuous.
We will still proceed for now and observe in the end, that we can indeed apply the theorem in
the ‘reverse’ direction by flipping the roles of primal and dual problem (and keeping careful track
of minus signs).

We find:
F* = d do — = d dv.
(@en= s [ oans [ var i) = [ odus [ vas
For the adjoint of A:
(6, ), Ar) = / 6Py + / $dPyy = / [6(z) + (y)]dy(z,y)
X X XxX

and so A*(¢, 1)) = ¢ @ 1p. For G we first observe that G(v) = [y, y cdy +eKL(y|p ® v). That
is, it is obtained from KL first by a positive re-scaling, and then by adding a linear term. Using
the simple relations

[f(z) =e-g(x)] = [f"(z) =e-g"(z/e)]

[f(z) = (a,z) +9(2)] = [f"(2) =9g"(z - a)

we obtain that G*(§) = e KL*((§ — ¢)/e|p) where KL* denotes the conjugation with respect to
the first argument. One obtains that

KL (€)= sup [ €dy=KL(p)
YEM(X xX)
u:g}gp)/[& u— p(u)] dp /so (§)dp

and a brief explicit computation yields that ¢*(s) = exp(s) — 1. Then, formally writing down

swp  —F*(~(6,4)) — G (4(9,v))

(ph)eC(X)?
yields the above expression for the dual problem.
It remains to show that we can actually apply the FR theorem. For this we now observe that
the functions F* and G* are globally finite and continuous, hence the ‘reverse constraint quali-
fications’ are satisfied. This implies that FR also provides the existence of optimal entropic OT
plans, which we had already established earlier by direct methods. O



Proposition 3.3 (Primal-dual optimality conditions for Fenchel-Rockafellar duality). = and yx
are primal and dual optimal in the FR-primal-dual problem pair above if and only if

[Az € OF" (—y") & —y* € OF (Ax)] A [x € 0G*(A™y") & A*y* € 0G(x)].
Proof. The Fenchel-Young inequality states that
Fla)+ F* () > (z,y%)

with equality if and only if x € 9F*(y*) or equivalently y* € OF ().
Now consider the primal dual gap of the above problem pair:

0 < [F(Az) + G(2)] = [-F*(-y") — G*(A™y)]
= [F(Az) + F*(=y") + (Az, —y")] + [G(2) + G (A%y) + (z, A™y7)]

By the Fenchel-Young inequality, this can be zero if and only if both parentheses are zero, which
happens if and only if the subdifferential conditions for both apply, which are the stated PD
optimality conditions. O

Proposition 3.4 (Application to entropic OT). A pair v € M(X x X), (¢,%) € C(X)? are
primal-dual optimal if and only if

Py = p, Py = v, v =exp([¢p Y —cl/e) - p.

Proof. Consider the condition Ay € OF*(—(¢,1)). Since F* is the linear pairing («, ) —
(o, u)+ (B, v), it is subdifferential is the singleton (u, ) at all points. With A being the marginal

projection operator, this translates to the two marginal constraints for ~.
The function G*(§) = ¢ [ [exp([{ — ¢]/e) — 1] dp is differentiable with

%G*(f +t-n)|i=0 = /exp([§ — c|/e)ndp.

The subdifferential is therefore given by 0G*(§) = exp([§ — ¢|/¢)p. Inserting now the argument
& = ¢ ® Y yields the expression for 7. O
4 Sinkhorn algorithm

Remark 4.1 (Choice of reference measure and existence of optimal dual solutions). For this
section we fix the choice p = p ® v. This will have some useful consequences, in particular
existence of continuous (and even more regular of ¢ is ‘nice’) optimal dual solutions.

The Sinkhorn algorithm can be interpreted as alternating block optimization on the dual problem,
alternatingly fixing one of the functions ¢ or 1 and optimizing over the other.

Lemma 4.2. For fixed ¢ € C'(X), an optimal ¢ in the dual entropic OT problem is given by

o) = =< 1o ([ exp((ute) ~ elaplfe) () )
Of course, the corresponding Lemma, for the second marginal also holds.

Proof. The dual entropic OT objective is concave and differentiable. Hence, its maximizers can
be determined by studying the first order optimality conditions. Let

J(6,1) = /¢du+ /wdu - s/X (6@ v —d/e) ~ Ndue
One finds that

GO+t n oo = [ ndu= [ explloa) + 0) = clo. )/l

-/ [1—exp<¢<x>/a> | expl(ty) - el /2)v(w) | o) du(o)
X X

For this to be zero for all n € C(X), we need that the bracket is zero p-almost everywhere.
Resolving this expression for ¢ yields the given expression. O



Definition 4.3 (Sinkhorn algorithm). For some initial ¥(?) € C(X), set recursively for £ €

(0,1,...},
$(2) = — - log ( [ esw0) ~ et/ du<y>) ,
$ED(y) = —¢ - log ( [ (6 @) - /o) du<x>> |

We refer to this procedure as the Sinkhorn algorithm.

Remark 4.4 (Primal interpretation of dual optimality condition). Recall the primal-dual opti-
mality condition v = exp([¢p ® 1 — ¢|/¢) - © ® v and the marginal constraint P;y = . Together
these imply for all n € C(X),

[ @ au@) = [ n@) e

XxX

—/ [exp(d)(x)/é‘)/ exp([¢(y) — ez, y)l/e)dv(y) | n(z) du(z).
X X

This is precisely the dual optimality condition for ¢ obtained in the above lemma. Hence, this
dual optimality condition has the primal interpretation that ¢ is chosen just right, such that the
implied primal v has the prescribed first marginal pu. Alternating maximization therefore also
has the interpretation of alternating re-scaling. Consequently, the Sinkhorn algorithm is also
known as iterative proportional fitting procedure.

Finally, these re-scalings can also be interpreted as KL projections of the ‘old’ v onto one of the
two marginal constraints, and thus the algorithm can also be interpreted as alternating projection
method.

Remark 4.5 (Entropic c-transform). The map ¢ — "¢ := ¢ where ¢ is given by the locally
optimal ¢,

o) = =10 ([ exp((vt) ~ elalfe) ()

is sometimes referred to as entropic c-transform.
The ‘classical’ c-transform is given by
“(z) = inf c(x,y) —

V(@) = inf c(z,y) — ¥(y)
and it plays an important role in the analysis of unregularized optimal transport and some
numerical methods, such as the auction algorithm.
Applying the classical c-transform in unregularized optimal transport will however always become
stationary after at most three steps (¢““ = ¢¢) and need not be converge to dual maximizers.
This is related to the fact that the unregularized dual problem is constrained and therefore non-

smooth. Alternating maximization may therefore get stuck in the ‘ridge’ corresponding to the
constraint.

Similar to the classical c-transform, ¥)¢*¢ inherits some regularity from c.

Lemma 4.6. Assume that ¢ has a modulus of continuity w in its first argument, i.e. ¢(z+4,y) <
c(x,y) + w(|d]) (here w : [0,00) — [0,00) is continuous and w(0) = 0), then ¥>"* has the same
modulus of continuity.

Proof.
YrE(z +0) = — - log (/X exp([Y(y) — c(z + 0,y)]/e) dV(y))

< —¢-log (/X exp([(y) — c(z,y) —w(|d])]/e) dl/(y)>
< PO () + w([0])- -



Remark 4.7. Indeed, one can show even higher-order Sobolev type regularity of entropic c-
transforms for the squared distance cost, see for instance |Genevay et al., 2019]. This is a
crucial step for statistical stability of empirical (entropic) optimal transport. This higher-order
regularity deteriorates as € — 0 and in the limit one obtains the ‘cursed’ convergence rates of
classical optimal transport.

This can be used for a simple convergence proof of the Sinkhorn algorithm, based on compactness.

Proposition 4.8. The Sinkhorn algorithm converges (up to subsequences and optimal constant
shifts) to a solution of the dual entropic OT problem. In particular, optimal dual solutions exist.

Proof. Since ¢ € C(X x X), there exists a modulus of continuity for both arguments. Hence, the
Sinkhorn iterates all have the same modulus of continuity and they are therefore equi-continuous.
Adding a constant shift to each ¢(“*1) such that ¢(+1)(z) = 0 for some arbitrary fixed zg € X
will merely result in a corresponding shift in the opposite direction in ¢tV In particular the
sequence (¢(9), will also be equibounded, as will be the sequence (1(9)),.

So by the Arzela—Ascoli theorem, there exists a pair of cluster points (¢, ) such that a suitable
subsequence of iterates (with some constant shifts) converges uniformly to these two functions.
Since the entropic c-transform is continuous, this means that ¢ = ¥<"¢ and ¢ = d)CT”“"E (here
c' denotes the ‘flipped’ cost function with first and second argument flipped).

This implies that v := exp([¢p DY — c|/e) - u @ v satisfies both marginal constraints, and thus the
tripled (7, (¢,%)) is primal and dual optimal for the entropic OT problem. O]

Remark 4.9.

e The convergence (and optimality proof) above does not extend to the case ¢ = 0, since
being a fixed point of the c-transforms is not sufficient for optimality in the unregularized
problem.

e The choice p = p®v was important in this section, as only by this choice does the expression
for )“"¢ obtain spatial regularity independent of p. This yields the compactness of the
iterates and existence of a continuous dual solutions.

Remark 4.10 (Matrix-scaling formulation). Introduce the functions

u = exp(¢/e), v = exp(¥/e),

(and likewise applied to all the iterates of the Sinkhorn algorithm). Then the iterations can be
written as

W (z) =1/ / exp(—c(z,y)/2)v (y) dv(y),
o (y) = 1/ / exp(—c(x,y)/e)u“ (z) dpu(x).

This can easily be expressed as matrix-vector multiplications in the discrete setting. This might
be a tad faster than the logsumexp-version, but is also numerically more prone to issues, especially
for small . There are many tricks for running the Sinkhorn algorithm stable and efficiently at
small €.

Remark 4.11 (Speed of convergence).

[Franklin and Lorenz, 1989]: linear convergence of dual iterates to maximizer in Hilbert’s
projective metric. But: contraction ratio approaches 1 like 1 — exp(—||c|loo/€) as € — 0.

[Schmitzer, 2019]: convergence of an asymmetric (‘auction-like’) Sinkhorn algorithm in
O(1/e) iterations (measured in L!-error of primal iterate marginal constraints)

[Berman, 2020]: convergence of the Sinkhorn algorithm for the Wy distance on the Torus
in O(1/¢) iterations, by showing that the iterates asymptotically follow a non-linear PDE

e-scaling very efficient in practice (at least on ‘normal problems’) but no proof for its
efficiency yet (as far as I am aware).



e There are several variants of Sinkhorn, intended to be faster, such as the ‘Greenkhorn’
algorithm.

Remark 4.12 (Flexibility of the Sinkhorn algorithm). One of the biggest strengths of the
Sinkhorn algorithm is that it can easily be adapted to related problems, such as optimal transport
barycenters, multi-marginal transport problems (only efficient, if there is some trick to handle the
high problem dimensionality), and unbalanced transport problems. See for instance: [Benamou
et al., 2015; Peyré, 2015; Chizat et al., 2018; Benamou et al., 2019|
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