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Abstract. We introduce optimal transport-type distances for manifold-
valued images. To do so we lift the initial data to measures on the product
space of image domain and signal space, where they can then be com-
pared by optimal transport with a transport cost that combines spatial
distance and signal discrepancy. Applying recently introduced ‘unbal-
anced’ optimal transport models leads to more natural results. We illus-
trate the benefit of the lifting with numerical examples for interpolation
of color images and classification of handwritten digits.

1 Introduction

The optimal transport (OT) problem has found various applications in signal and
image processing, computer vision and machine learning [13,7,8,15]. In imaging
applications one typically faces two problems: Standard OT can only compare
measures of equal mass which is often an unnatural assumption. Further, the in-
volved discretized transport problems are very high-dimensional and challenging
to solve. The former problem has for instance been addressed by the Hellinger-
Kantorovich (HK) distance (or Wasserstein-Fisher-Rao distance) [10,5,12], which
allows to compare ‘unbalanced’ measures of different mass. This metric does not
only extend to measures of different total mass, but yields often also more reason-
able results on balanced measures by removing artifacts where small portions
of mass would otherwise have to be moved very far. For numerically solving
OT problems a broad family of methods has been devised, such as the network
simplex [1] or a fluid-dynamic formulation [3]. Another choice is the entropy
regularization technique and the Sinkhorn scaling algorithm [7], which has been
extended to ‘unbalanced’ problems in [6].

The OT distance – and the HK distance – induce a metric on non-negative,
scalar signals. Recently, the question how to define meaningful transport-type
metrics on multi-channel data has arisen. For instance, in [8] OT has been ex-
tended to RGB color images, and in [15] so-called TLp-distances are introduced,
a transport-type metric over vector valued signals. It is illustrated that these dis-
tances remain sensitive to high-frequency signal oscillations, but are at the same
time robust to deformations such as translations, thus uniting the advantages of
Lp and Wasserstein distances. In both approaches the original non-scalar data
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is transformed to a non-negative scalar measure on the product space of image
domain and signal space, where it can be compared in a classical OT framework.

Contribution and Outline. In this article we build on the work of [8] and present a
framework for transport-type metric on multi-channel and manifold valued data.
Also in our approach, signals will be lifted to measures on the product space of
image domain and signal space, and then compared with transport-type metrics,
using a cost function combining spatial distance and signal discrepancy. For
comparison we use the HK distance, which can compare non-normalized images
and yields more natural assignments. To solve the resulting, high-dimensional
optimization problems we employ efficient diagonal scaling algorithms based on
entropy regularization [6] that generalize the well-known Sinkhorn algorithm.

In our numerical examples, we apply our framework to color images in dif-
ferent color spaces by defining three lifting models with different interpretations
of the mass and signal component and show that they are adapted for different
types of images. The geodesic structure of the OT and HK distances can be
used to compute image interpolations. For this we propose a back projection
map that takes an intermediate lifted measures back to an intermediate mani-
fold valued image. To showcase the potential for machine learning applications,
we further apply the idea to classification of handwritten digits of the MNIST
database. The sample data is initially scalar and no lifting would be required.
We demonstrate that lifting, based on features extracted from the scalar data,
yields improved performance.

The article is organized as follows: In Sect. 2 we introduce the generic math-
ematical framework of our model. Sect. 3 discusses discretization and optimiza-
tion. Application of our model to color images and the MNIST handwritten
digits database with corresponding numerical results are presented in Sect. 4.

Relation to [8] and [15]. The framework presented in this article is more general
compared than the approach of [8] and our optimization scheme extends to
more complex signal spaces. Relative to [15] we use unbalanced transport for
comparison and introduce the back projection map. Moreover, [15] mostly uses
a fixed reference measure with constant density for lifting. We put more emphasis
on this choice, in particular we extract the measure from the signal, which is an
important part of our model. Conversely, for the MNIST example we propose
that the signal can be extracted from the measure.

2 Unbalanced Transport for Manifold-Valued Signals

2.1 Wasserstein and Hellinger-Kantorovich Distances

Let X ⊂ Rd be the image domain, e.g. [0, 1]2, and M the signal space, e.g. an
appropriate color space. Further, let dX(x0, x1) = ‖x0 − x1‖2 be the Euclidean
distance on X and let dM be a suitable metric onM. We denote by Y = X×M
the product space which we endow with the metric d2Y((x0,m0), (x1,m1)) =
d2X(x0, x1)+λ2 ·d2M(m0,m1), where λ ≥ 0 is a relative weighting parameter. We
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assume that X,M and Y are compact, complete and equipped with their Borel
σ-algebras. For a measurable space Z (for example X, Y or Y × Y), we denote
by P(Z) the set of non-negative Radon measures over Z and by P1(Z) ⊂ P(Z)
the set of probability measures. The Dirac delta at z ∈ Z is denoted by δz. For
two measurable spaces Z1, Z2, a measure µ ∈ P(Z1) and a measurable map
f : Z1 → Z2, the push-forward (or image measure) f#µ of µ under f is given by
(f#µ)(σ) = µ(f−1(σ)) for all measurable sets σ ⊂ Z2.

Let prZ,0 : Z2 → Z, (z0, z1) 7→ z0 and similarly prZ,1(z0, z1) = z1 be projec-
tions from Z2 to the first and second component. For a measure π ∈ P(Z2) the
first and second marginal are then given by prZ,i] π, i ∈ {0, 1} respectively.

Let µi ∈ P1(X), i ∈ {0, 1}. The set

ΠX(µ0, µ1) =
{
π ∈ P(X2) : prX,i] π = µi for i ∈ {0, 1}

}
(2.1)

is called the set of transport plans between µ0 and µ1. Every π ∈ ΠX(µ0, µ1)
describes a rearrangement of the mass of µ0 into µ1. The 2-Wasserstein distance
over X between µ0 and µ1 is given by

d2W,X(µ0, µ1) = inf
π∈ΠX(µ0,µ1)

∫
X2

d2X(x0, x1) dπ(x0, x1). (2.2)

This means we are looking for the cheapest plan π, where the cost of moving
one unit of mass from x0 to x1 is given by d2X(x0, x1). The Wasserstein distance
dW,X is a metric over P1(X), for a thorough introduction to this topic we refer
to [16].

The distance dW,X only allows comparison between normalized measures:
otherwise ΠX(µ0, µ1) is empty and dW,X(µ0, µ1) = +∞. This is remedied by the
Hellinger-Kantorovich distance, as introduced e.g. in [12], which allows creation
and annihilation of mass and hence induces a (finite) metric over all non-negative
measures P(X). For a parameter κ > 0 the Hellinger-Kantorovich distance is
given by [12, Sects. 6–7]

d2HK,X(µ0, µ1) = κ2 inf
π∈P(X2)

1∑
i=0

KL(prX,i] π|µi) +

∫
X2

cX,κ(x0, x1) dπ(x0, x1) (2.3)

where

cX,κ(x0, x1) =

{
− log

(
[cos(dX(x0, x1)/κ)]2

)
if dX(x0, x1) < κ · π2

+∞ else,
(2.4)

and KLX(µ|ν) denotes the Kullback-Leibler (KL) divergence from ν to µ. Com-
pared to (2.2) the constraint prX,i] π = µi, i ∈ {0, 1} is relaxed. The plan π can
now be any non-negative measure and the discrepancy between prX,i] π and µi
is penalized by the KL divergence. This implies in particular that dHK,X(µ0, µ1)
is finite when µ0(X) 6= µ1(X). Additionally, the cost d2X is replaced by cX,κ.
Note that cX,κ(x0, x1) = +∞ if dX(x0, x1) ≥ κ ·π/2. Thus, beyond this distance
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no transport occurs and mass growth completely takes over. The precise form
of cX,κ is determined by an equivalent fluid-dynamic-type formulation [12]. The
parameter κ balances between transport and mass changes. As κ→ 0, dHK,X/κ
converges towards the Hellinger distance, which is purely local and does not
involve transport. For κ → ∞ one finds dHK,X(µ0, µ1) → dW,X(µ0, µ1) [12,
Sect. 7.7].

When (X, dX) is a length space, this holds for (P1(X), dW,X) as well. Let µ0,
µ1 ∈ P1(X) and let π be a corresponding minimizer of (2.2). A geodesic between
µ0 and µ1 can be reconstructed from π. Intuitively, a mass particle at π(x0, x1)
has to travel with constant speed along the geodesic from x0 to x1 (which is a
straight line in Rd). This can be formalized as follows: for t ∈ [0, 1] let

γt : X ×X → X, (x0, x1) 7→ (1− t) · x0 + t · x1 . (2.5)

That is, t 7→ γt(x0, x1) describes the geodesic between x0 and x1 in X. Then a
geodesic between µ0 and µ1 is given by

[0, 1] 3 t 7→ µt = γt#π . (2.6)

This is the displacement interpolation [16] between µ0 and µ1. It often provides
a more natural interpolation than the naive linear trajectory [0, 1] 3 t 7→ (1 −
t) · µ0 + t · µ1. The famous Benamou-Brenier formula [3] is an equivalent fluid-
dynamic-type reformulation of (2.2) directly in terms of finding the displacement
interpolation.

Similarly, (P(X), dHK,X) is a length space and geodesics can be constructed
from optimal couplings π in (2.3). The construction is more involved, since par-
ticles change their mass and speed while travelling. We refer to [12, Part II] for
a detailed elaboration of dHK,X geodesics. There also is a fluid-dynamic-type
formulation for dHK,X [10,5,12], in which mass changes are penalized by the
Hellinger (or Fisher-Rao) distance. This equivalence determines the precise form
of (2.4). An illustration of displacement interpolations is given in Fig. 1.

2.2 Manifold-Valued Images, Lifted Measures and Distances

Next, we extend the transport-type metrics to M-valued signals. First, observe
that in complete analogy to Sect. 2.1, ΠY , KLY and cHK,Y can be defined
over the metric space (Y, dY). Consequently, the Wasserstein distance dW,Y and
Hellinger-Kantorovich distance dHK,Y can be constructed over P1(Y) and P(Y).
For example, for ν0, ν1 ∈ P1(Y) we find

d2W,Y(ν0, ν1) = inf
π∈ΠY(ν0,ν1)

∫
Y2

d2Y
(
(x0,m0), (x1,m1)

)
dπ
(
(x0,m0), (x1,m1)

)
. (2.7)

Now, the key is to lift the original M-valued signals over X to non-negative
measures on the product space Y = X ×M, where they can then be compared
with dW,Y and dHK,Y . Let fi : X → M, i ∈ {0, 1} be two (measurable) M-
valued images that we want to compare and let µi ∈ P(X) be two corresponding
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t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

Fig. 1. Geodesics in (P1(X), dW,X) and (P(X), dHK,X). Top row: Wasserstein geodesic
between two pairs of Gaussians with different mass. To compensate the local difference,
mass is sent from the right to the left. Middle row: Hellinger-Kantorovich geodesic for
κ = 60. The mass difference between upper and lower Gaussians is compensated locally
by creating and shrinking mass, leading to a more natural interpolation. Note that
the left and right Gaussian are travelling at slightly different speeds and are slightly
ellipsoidal during transport, which is characteristic for dHK geodesics. Bottom row: dHK

geodesic for κ = 16. A lot of the differences between the two images is now compensated
purely by growth and shrinkage of mass.

measures. The choice of the measures µi is an important part of the model and
we will describe this choice in detail for each model in Sect. 4.1.

From the pairs (fi, µi), i ∈ {0, 1}, we generate two measures on Y as follows:

νi = Fi#µi, where Fi : X → Y, x 7→
(
x, fi(x)

)
(2.8)

For example, if µ0 = δx then ν0 = δ(x,f0(x)). That is, a Dirac measure at x ∈ X is
lifted to a Dirac at (x, f0(x)) ∈ Y. The signal fi becomes encoded in the position
of the mass of νi (i.e. we only ‘care’ about the values of fi µi-a.e.).

Let F : (x0, x1) 7→
(
F0(x0), F1(x1)

)
=
(
(x0, f0(x0)), (x1, f1(x1))

)
. It is then a

simple exercise to show that F#ΠX(µ0, µ1) = ΠY(F0#µ0, F1#µ1). Consequently,
for lifted measures νi = Fi#µi the lifted Wasserstein distance can be written as

d2W,Y(ν0, ν1) = inf
π∈ΠX(µ0,µ1)

∫
X2

(
d2X(x0, x1) + λ2d2M

(
f0(x0), f1(x1)

))
dπ(x0, x1).

(2.9)

This implies that the lifted distance dW,Y between lifted signals can be com-
puted by a transport problem over X, where the transport cost between x0
and x1 not only depends on the spatial distance dX(x0, x1), but also on the
‘signal distance’ dM(f0(x0), f1(x1)). An analogous interpretation holds for the
lifted Hellinger-Kantorovich distance. The authors of [15] provide some intu-
ition for lifted distances (Y, dW,Y) and show that (2.9) defines a distance over
(signal,measure)-pairs (f, µ). We will illustrate these lifted distances and demon-
strate their benefit for meaningful image registration and enhanced classification
scores for various example models throughout Sect. 4.

Again, in analogy to Sect. 2.1, when (Y, dY) is a length space, so are (P1(Y),
dW,Y) and (P(Y), dHK,Y). Accordingly, for two marginals ν0, ν1 ∈ P1(Y) (or
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P(Y)) one can construct geodesics t 7→ νt similar to (2.6) (or for dHK). The
main difference is that the map γt, describing geodesics in X, (2.5) has to be
replaced by geodesics on (Y, dY). In the lifted geodesics, mass is travelling both
in spatial direction X as well as the ‘signal’ direction M.

We want to use such geodesics to interpolate between pairs of signals (fi, µi)
that we lift to measures νi via (2.8), i ∈ {0, 1}. However, an intermediate point
νt, t ∈ (0, 1) on the geodesic between ν0 and ν1, cannot always be written as a
lifting of an intermediate pair (ft, µt). Intuitively, this is because at time t several
mass particles might occupy the same spatial location x ∈ X, but at different
signal positions m, m′ ∈ M and such a constellation cannot be obtained by a
push-forward from P(X) as in (2.8). We propose to resolve such overlaps by
picking for each location in x ∈ X the barycenter m ∈M w.r.t. dM of all signal
values m and m′ that can be found at this location. Let ρ ∈ P1(M) describe a
signal distribution of lifted mass particles in Y ‘over’ a given location x ∈ X.
The barycenter of ρ is defined as

Bar(ρ) = argmin
m∈M

∫
M
d2M(m,m) dρ(m) . (2.10)

In this article we assume that a unique minimizer exists. When M is a convex
subset of Rn the barycenter is given by the center of mass. To construct (f, µ)
from a given ν ∈ P(Y) we first set

µ = P#ν where P : Y → X, (x,m) 7→ x . (2.11)

That is, at every point x ∈ X, µ gathers all the mass of ν in the fibre {x} ×
M. Then, by the disintegration theorem [2, Thm. 5.3.1], there is a family of
probability measures ρx for all x ∈ X (unique µ-a.e.) such that we can write∫

Y
φ(x,m) dν(x,m) =

∫
X

(∫
M
φ(x,m) dρx(m)

)
dµ(x) (2.12)

for any measurable φ : Y → [0,+∞]. ρx can be thought of as describing how
the mass of ν in the fibre {x} ×M is distributed. Now, we set f(x) = Bar(ρx),
which is well-defined µ-almost everywhere. This signal f is the best point-wise
approximation of the lifted measure ν in the sense of (2.10). We call (f, µ)
the back projection of ν. Note that if ν is in fact a lifting of some (f, µ), then
ρx = δf(x) µ-a.e. and (f, µ) are recovered (µ-a.e.) by back projection.

3 Discretization and Optimization

For our numerical experiments we assume that all measures µi are concentrated
on a discrete Cartesian pixel grid X = {x1, . . . , xN} ⊂ X ⊂ R2 and we only care
about the values of signals fi on X. Thus, all feasible π in (2.9) are concentrated
on X2 and (2.9) becomes a finite dimensional problem. It can be written as

d2W,Y(F0#µ0, F1#µ1) = inf
π∈Π(µ0,µ1)

〈d,π〉 , where 〈d,π〉 def.
=

N∑
j,k=1

dj,k πj,k , (3.1)



Optimal Transport for Manifold-Valued Images 7

with discrete vectors µi ∈ RN , (µi)j = µi({xj}), discrete couplings Π(µ0,µ1) =

{π ∈ RN×N+ : π 1 = µ0,π
>1 = µ1} and dj,k = d2X(xj , xk) + λ2d2M

(
f0(xj),

f1(xk)
)
. Here, 1 ∈ RN is the vector with all entries being 1, π 1, π>1 give the

column and row sums of π, which is the discrete equivalent of prX,i] π. Similarly,
since KL(µ|ν) = +∞ if µ 6� ν, all feasible π in the unbalanced problem (2.3)
are concentrated on X2. The discrete unbalanced equivalent of (2.9) becomes

d2HK,Y(F0#µ0, F1#µ1) = κ2 inf
π∈RN×N

+

KL(π 1|µ0) + KL(π>1|µ1) + 〈c,π〉 , (3.2)

where cj,k = cHK,Y
(
(xj , f0(xj)), (xk, f1(xk))

)
, analogous to d, and KL is the

discrete Kullback-Leibler divergence. Note that this approach does not require
discretization of the signal spaceM. Once an optimal π for the finite dimensional
problems (3.1) or (3.2) is obtained, it can be used to construct the geodesic
between F0#µ0 and F1#µ1 with the lifted variants of (2.6) (or for dHK), see
above. These geodesics consist of a finite number of Dirac measures travelling
smoothly through Y.

Now, we describe the discretized back projection. To generate an intermediate
image (ft, µt), living on the discrete grid X, we proceed as follows: the mass of
any travelling Dirac at location (x,m) ∈ Y is distributed to the closest four pixels
in X according to bilinear interpolation. In this way, we obtain for each pixel xj ∈
X a total mass, corresponding to µt({xj}) = (µt)j , (2.11), and a distribution
overM, corresponding to ρx, (2.12). The barycenter of this distribution, (2.10),
yields the discrete backprojected signal ft(xj).

To solve problems (3.1) and (3.2) we employ the entropy regularization ap-
proach for optimal transport [7] and unbalanced transport [6]. For a (small) pos-
itive parameter ε > 0 we regularize the problems by adding the term ε ·KL(π|I),
where I ∈ RN×N is the matrix with all entries being 1 and by a slight abuse
of notation KL denotes the discrete KL-divergence extended to matrices. The
regularized variant of (3.1) can be solved with the Sinkhorn algorithm [7], the
regularized version of (3.2) with a slightly more general (but equally simple)
scaling algorithm [6]. In our examples, N is of the order of 104, hence working
on the full grid X×X is infeasible. To obtain good approximations to the origi-
nal problems (3.1) and (3.2) we want to choose a small ε, which leads to several
numerical issues. To remedy these problems we employ the numerical scheme
described in [14]. In particular this allows setting ε small enough to make the in-
duced entropic smoothing practically negligible and uses sparse approximations
of X2 to reduce the required memory and runtime.

In [8] a Benamou-Brenier-type formula [3] was used to solve problem (2.7)
for RGB-images (cf. Sect. 4.1) with a particular formulation that required only
three points to discretize M (corresponding to three color channels). However,
it would be challenging to generalize this approach to other, higher-dimensional
M, since it would entail discretizing the high-dimensional space Y = X ×M.
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4 Examples and Numerical Results

4.1 Color Images

Let X ⊂ R2 be the discrete image domain (cf. Sect. 3) and let g : X → C be a
color image, where C is either the RGB or HSV color space (for details on the
color spaces we refer to [9]). In the following, we present three different ways
how to choose M and how to generate the pair (f, µ) from g. In the first two
models µ takes the form µ =

∑
x∈X w(x) · δx, so µ can be specified by fixing the

weighting function w : X→ R+.
rgb-cube: Let C = [0, 1]3 be the RGB color space. In this model we choose

M = C and dM is the Euclidean distance on M. We set f = g and w(x) = 1
for all x ∈ X, i.e. µ is the ‘uniform’ counting measure over the pixels. So every
pixel gets lifted to a point determined by its RGB values with mass 1.

hsv-disk: Let C = S1 × [0, 1]2 represent the HSV color space and let g =
(h, s, v) be a triplet of functions specifying hue, saturation and value of each
pixel. In this model we choose M = S1 × [0, 1] and set f = (h, s) and w = v.
For (h0, s0), (h1, s1) ∈M the metric is given by

d2M((h0, s0), (h1, s1)) =

∥∥∥∥(s0 cos(h0)
s0 sin(h0)

)
−
(
s1 cos(h1)
s1 sin(h1)

)∥∥∥∥2
2

,

which is the Euclidean distance in polar coordinates. In this model, hue and
saturation of each pixel are transformed into lifted coordinates and the value
channel is transformed into mass. Black pixels are not assigned any mass. This
model is suited for scenarios where intensity puts the emphasis on certain details,
e.g. bright objects on a dark background.

rgb-triple: Let again C = [0, 1]3 be the RGB color space. This model requires a
slight extension of the lifting framework and (2.8), as every pixel is transformed
into three Dirac masses. As in rgb-cube we choose M = [0, 1]3. Let g = (r, g, b)
be a function triplet specifying an RGB image. We define the lifted measure as

ν =
∑
x∈X

r(x) · δ(x,(1,0,0)>) + g(x) · δ(x,(0,1,0)>) + b(x) · δ(x,(0,0,1)>).

To reconstruct a color image from a (discrete) measure ν ∈ P(Y) we map a Dirac
ρ · δ(x,(z1,z2,z3)) to the color (r, g, b) = (ρ z1, ρ z2, ρ z3). This is a reformulation of
the color transport model of [8] in our framework. It is particularly suited in cases
where we want to model additive mixing of colors. In Fig. 2 we visualize geodesics
in (M, dM) for the models rgb-cube and hsv-disk in the RGB cube and the HSV
cylinder. For example, the trajectory from blue to red in both models goes via
pink, as expected. But the precise transition varies. Fig. 3 shows the transport
between simple mixtures of Gaussians of different colors to illustrate the behavior
of our model. The first two rows show how the weighting between color transport
and spatial transport influences the result. The third row depicts the result of
the back projection in case of superposition of two Gaussians. Finally, in the
last two rows the fundamentally different behavior of the models hsv-disk and
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Fig. 2. Geodesics in the models rgb-cube (second and fourth column) and hsv-disk (third
and fifth column), visualized in the RGB cube (top) and the HSV cylinder (bottom).
Trajectories from ’red’ (r, g, b) = (1, 0, 0) to ’blue’ (r, g, b) = (0, 0, 1) (second and third
column) and from ’pink’ (r, g, b) = (1, 0, 1) to ’green’ (r, g, b) = ( 1

2
, 1, 0) (fourth and

fifth column).

rgb-triple is visible, here the rgb-triple model leads to a division of color into the
single color channels.

Next, we provide three examples for real images in Fig. 4. The examples are
chosen in order to illustrate which model is suited best for which kind of images.
For standard photographies, the rgb-cube model is suited best. As an example,
we show in the top row the interpolation between two photos of a tree, taken in
summer and autumn.3 For the second row we use the same optimal π, but during
interpolation mass particles only travel in signal direction, staying at the same
spatial location. Thus, only the color is transformed while the geometry of the
image remains fixed (cf. [15]). Both cases yield realistic interpolations, despite
slight artifacts in the first row. This is expected, as optimal transport does not
explicitly enforce spatial regularity of the optimal matching. For geometrically
aligned images as in our example, these artifacts can be removed in a local post-
processing step. Future work will include studying additional terms to enforce
more spatially regular interpolations between images with substantially different
geometries. In the hsv-disk model, the mass of a pixel depends on its intensity. As
a consequence, the model is well suited for images showing bright objects on a
dark background. An example for such kind of images are fireworks, and the third
and fourth row Fig. 4 show the results obtained by transporting such images in
the hsv-disk model. In both cases, color and shape are nicely interpolated during
the transport. In the rgb-triple model, each color channel is treated separately,
which allows the mass to travel through the channels. Such a color decomposition
naturally occurs in the spectral decomposition of light. The fifth row of Fig. 4
gives the interpolation between an image with pure white light and an image
showing the single colors of the spectrum obtained with a prism.4

3 The tree images were kindly provided by Dr. J. Hagelüken.
4 The images were kindly provided by N. Spiker.
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t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

Fig. 3. Back projection of several geodesics between mixtures of Gaussians in dW,Y
for the color model hsv-disk (and rgb-triple, last row). First row: λ ≈ 0, transport
cost depends essentially only on spatial location, regardless of colors. Second row: with
λ = 50 a more natural color assignment is obtained. Third row: ‘collision’ of a blue and
a red Gaussian results in a pink Gaussian via back projection. Fourth and fifth row:
comparison between color models: hsv-disk gradually interpolates the hue, rgb-triple
decomposes each pixel into elementary colors and rearranges these components.

4.2 MNIST Handwritten Digits

In this section we present an example for a machine learning application on
the MNIST handwritten digits dataset [11]. The dataset consists of 28 × 28
pixel gray level images of handwritten digits {0, 1, . . . , 9}, which we interpret
as probability measures in P1(X). Note that despite using dHK we choose to
normalize all images before comparison because we do not want global mass
differences to influence the distance, but only local discrepancies.

Since the original samples already lie in P1(X), they can directly be compared
with dW,X or dHK,X . A priori, there is no need for a signal manifoldM or lifting.
Nevertheless, for an image µ ∈ P1(X), we propose to interpret a locally smoothed
Hessian of the image as R2×2 =M-valued signal f , metrized by the Frobenius
norm. Since the Hessian represents local image curvature, the signal f can be
thought of as encoding the local orientation of the lines in µ. We demonstrate
that by using this additional information, the lifted distances dW,Y and dHK,Y can
discriminate more accurately between different digits. Fig. 5 shows the improved
performance in nearest neighbour retrieval and a clearer class separation in a
multi-dimensional scaling representation. Note that both the lifting, as well as
switching from standard to unbalanced transport improve the performance. The
approach to generate the signal f from µ can be seen as complimentary to the
color models (Sect. 4.1) and illustrates the flexibility of the lifting approach.
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Fig. 4. Transport of ‘real’ images. First two rows: Transport between two photos of
trees in different seasons using the rgb-cube model for the whole image and for the color
only. Third and fourth row: Transport of firework images using the hsv-disk model. The
hsv-diskmodel is advantageous here since there are large dark parts that get a small
weight in this model. Fifth row: Transport between two images showing the spectrum
of light using the rgb-triple model. Due to the decomposition of the spectrum with the
prism the rgb-triple model is a natural choice for this example.

5 Conclusion

Standard transport-type distances are limited to scalar non-negative measures.
We presented a lifting procedure to allow comparison of non-scalar signals. The
method is generic and flexible, as illustrated by our examples: we computed in-
terpolations of images over different color spaces and demonstrated the benefit
of the lifted distances for classification in a simple machine learning example. Fu-
ture work comprises the study of more complex signal manifolds, such as spheres
and SPD matrices, as well as the computation of corresponding barycenters.
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